Year 11 Transition to $6^{\text {th }}$ Form BTEC Applied Science Projects

BTEC Applied Science is a mixture of all three science areas of Biology, Chemistry and Physics. The course comprises a mixture of coursework, practical work and exams. This project will give you an idea of the sort of topics you will be covering in this course. Please complete all tasks in as much detail as you can.
The first two tasks are Biology research tasks. Task 3 is a Physics research task. All three of these are new topics you have not met at GCSE. Tasks 4-9 are Chemistry tasks which mostly can be done on these sheets. These are mostly short tasks and some of them are recapping or stretching GCSE knowledge which is essential for the BTEC course.

You may find the following websites helpful:

Dummies.com - Education - Science
Britannica.com
Youtube - HealthCare - Nerve Transmission
Youtube - Bozeman Science - The Action Potential
Parkinsonsnewstoday.com
Parkinsons.org.uk
Scienceofparkinsons.com
Bbc Bitesize - Physics, Chemistry

Task 1

Using annotated drawings, explain the conduction of a nerve impulse along an axon, including changes in membrane permeability to sodium and potassium ions.

Task 2

Describe how imbalances in dopamine can cause Parkinson's Disease and how is L-Dopa used for the treatment of Parkinson's Disease.

Task 3

What are diffraction gratings in Physics and how they can be used to identify different gasses?

Task 4

Relative atomic mass $\left(\mathrm{A}_{\mathrm{r}}\right)$
The relative atomic mass of an element is the average mass of its atoms compared to $1 / 12^{\text {th }}$ the mass of one atom of carbon-12.

The Periodic Table of Elements

1	2											3	4	5	6	7	0 (8)
(1)	(2)	Key					1.0 \mathbf{H} hydrogen $\mathbf{1}$					(13)	(14)	(15)	(16)	(17)	$\begin{gathered} (18) \\ \hline 4.0 \\ \begin{array}{c} \text { He } \\ \text { helium } \\ 2 \end{array} \end{gathered}$
6.9 $\mathbf{L i}$ lithium 3	9.0 Be beryllium 4	relative atomic mass atomic symbol name atomic (proton) number										$\begin{gathered} 10.8 \\ \text { B } \\ \text { boron } \\ 5 \\ \hline \end{gathered}$	$\begin{gathered} 12.0 \\ \text { carbon } \\ 6 \end{gathered}$	$\begin{gathered} 14.0 \\ \mathrm{~N} \\ \text { nitrogen } \\ 7 \end{gathered}$	$\begin{gathered} 16.0 \\ \mathrm{O} \\ \text { oxygen } \\ 8 \\ \hline \end{gathered}$	$\begin{array}{c\|} \hline 19.0 \\ F \\ \text { fluorine } \\ 9 \\ \hline \end{array}$	$\begin{gathered} 20.2 \\ \mathrm{Ne} \\ \text { neon } \\ 10 \\ \hline \end{gathered}$
$\begin{gathered} 23.0 \\ \mathrm{Na} \\ \text { sodium } \\ 11 \end{gathered}$	$\underset{\substack{24.3 \\ \mathrm{Mg} \\ \mathrm{Mg} \\ 12}}{\mathbf{1 2}} \mathbf{y}$	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	$\mathbf{2 7 . 0}$ $\mathbf{A l}$ aluminium 13	$\begin{gathered} 28.1 \\ \text { Si } \\ \text { silicon } \\ 14 \end{gathered}$	31.0 \mathbf{P} phosphorus 15	$\begin{gathered} 32.1 \\ S \\ \text { sulfur } \\ 16 \end{gathered}$	$\begin{gathered} 35.5 \\ \text { Cl } \\ \text { chlorine } \\ 17 \end{gathered}$	$\begin{gathered} 39.9 \\ \mathrm{Ar} \\ \text { argon } \\ 18 \end{gathered}$
39.1 \mathbf{K} potassium 19 85.5	$\begin{gathered} 40.1 \\ \text { Ca } \\ \text { calcium } \\ 20 \\ \hline \end{gathered}$	45.0 Sc scandium 21	\qquad	50.9 \mathbf{V} vanadium 23	52.0 chromium 24	54.9 $M n$ manganese 25	$\begin{gathered} \hline 55.8 \\ \text { Fe } \\ \text { iron } \\ 26 \\ \hline \end{gathered}$	$\begin{gathered} 58.9 \\ \text { Co } \\ \text { cobalt } \\ 27 \\ \hline \end{gathered}$	58.7 Ni nickel 28	$\begin{gathered} 63.5 \\ \mathrm{Cu} \\ \text { copper } \\ 29 \\ \hline \end{gathered}$	$\begin{gathered} \hline 65.4 \\ \text { Zn } \\ \text { zinc } \\ 30 \\ \hline \end{gathered}$	$\begin{gathered} 69.7 \\ \text { Ga } \\ \text { gallium } \\ 31 \\ \hline \end{gathered}$	72.6 Ge germanium 32	$\begin{gathered} \hline 74.9 \\ \text { As } \\ \text { arsenic } \\ 33 \\ \hline \end{gathered}$	79.0 Se selenium 34	$\begin{gathered} 79.9 \\ \mathbf{B r} \\ \text { bromine } \\ 35 \\ \hline \end{gathered}$	$\begin{gathered} 83.8 \\ \mathbf{K r} \\ \text { krypton } \\ 36 \\ \hline \end{gathered}$
85.5 $\mathbf{R b}$ rubidium 37	87.6 Sr strontium 38	$\begin{gathered} 88.9 \\ \mathbf{Y} \\ \text { yttrium } \\ 39 \end{gathered}$	91.2 Zr zirconium 40	$\begin{gathered} 92.9 \\ \mathrm{Nb} \\ \text { niobium } \\ 41 \end{gathered}$	95.9 Mo molybdenum 42	[98] Tc technetium 43	101.1 Ru ruthenium 44	$\begin{gathered} 102.9 \\ \mathbf{R h} \\ \text { rhodium } \\ 45 \end{gathered}$	106.4 Pd palladium 46	$\begin{gathered} 107.9 \\ \mathrm{Ag} \\ \text { silver } \\ 47 \\ \hline \end{gathered}$	$\begin{gathered} \hline 112.4 \\ \text { Cd } \\ \text { cadmium } \\ 48 \\ \hline \end{gathered}$	$\begin{gathered} 114.8 \\ \text { In } \\ \text { indium } \\ 49 \\ \hline \end{gathered}$	$\begin{gathered} \hline 118.7 \\ \text { Sn } \\ \text { tin } \\ 50 \end{gathered}$	121.8 Sb antimony 51	```127.6 Te tellurium 5 2```	$\begin{gathered} 126.9 \\ \text { I } \\ \text { iodine } \\ 53 \end{gathered}$	$\begin{gathered} 131.3 \\ \text { Xe } \\ \text { xenon } \\ 54 \end{gathered}$
$\begin{gathered} 132.9 \\ \mathrm{Cs} \\ \text { caesium } \\ 55 \end{gathered}$	$\begin{gathered} 137.3 \\ \text { Ba } \\ \text { barium } \\ 56 \\ \hline \end{gathered}$	138.9 La* tanthanum 57	$\begin{gathered} 178.5 \\ \mathrm{Hf} \\ \text { hafnium } \\ 72 \end{gathered}$	$\begin{gathered} 180.9 \\ \mathrm{Ta} \\ \text { tantalum } \\ 73 \end{gathered}$	$\begin{gathered} \hline 183.8 \\ \mathbf{W} \\ \text { tungsten } \\ 74 \\ \hline \end{gathered}$	$\begin{gathered} 186.2 \\ \mathbf{R e} \\ \text { rhenium } \\ 75 \\ \hline \end{gathered}$	$\begin{gathered} 190.2 \\ \text { Os } \\ \text { osmium } \\ 76 \end{gathered}$	$\begin{gathered} 192.2 \\ \text { Ir } \\ \text { iridium } \\ 77 \\ \hline \end{gathered}$	$\begin{gathered} 195.1 \\ \mathrm{Pt} \\ \text { platinum } \\ 78 \\ \hline \end{gathered}$	$\begin{gathered} 197.0 \\ \text { Au } \\ \text { gold } \\ 79 \end{gathered}$	$\begin{gathered} 200.6 \\ \mathrm{Hg} \\ \text { mercury } \\ 80 \\ \hline \end{gathered}$	$\begin{gathered} 204.4 \\ \mathrm{Tl} \\ \text { thallium } \\ 81 \\ \hline \end{gathered}$	$\begin{gathered} 207.2 \\ \text { Pb } \\ \text { lead } \\ 82 \\ \hline \end{gathered}$	$\begin{gathered} 209.0 \\ \mathbf{B i} \\ \text { bismuth } \\ 83 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline[209] \\ \text { Po } \\ \text { polonium } \\ 84 \\ \hline \end{array}$	$\begin{gathered} \hline[210] \\ \text { At } \\ \text { astatine } \\ 85 \\ \hline \end{gathered}$	$\begin{gathered} {[222]} \\ \mathbf{R n} \\ \text { radon } \\ 86 \\ \hline \end{gathered}$
$\begin{gathered} {[223]} \\ \mathrm{Fr} \\ \text { francium } \\ 87 \\ \hline \end{gathered}$	$\begin{gathered} \hline[226] \\ \mathrm{Ra} \\ \text { radium } \\ 88 \\ \hline \end{gathered}$	$[227]$ $\mathbf{A c}^{*}$ actinium 89	$[261]$ $\mathbf{R f}$ nutherfordium 104	$\begin{gathered} \hline \text { [262] } \\ \text { Db } \\ \text { dubnium } \\ 105 \\ \hline \end{gathered}$	$[266]$ Sg seaborgium 106	$\begin{gathered} \text { [264] } \\ \text { Bh } \\ \text { bohrium } \\ 107 \\ \hline \end{gathered}$	$\begin{gathered} {[277]} \\ \mathrm{Hs} \\ \text { hassium } \\ 108 \end{gathered}$	$[268]$ Mt meitnerium 109	$[271]$ Ds darmstadtium 110	$[272]$ $\mathbf{R g}$ roentgenium 111	Elements with atomic numbers 112-116 have been reported but not fully authenticated						
* Lanthanide series * Actinide series			$\begin{gathered} 140 \\ \mathrm{Ce} \\ \text { cerium } \\ 58 \\ \hline \end{gathered}$	141 Pr praseocymium 59	144 Nd neodymium 60	$[147]$ Pm promethium 61	150 Sm samarium 62	152 Eu europium 63	157 Gd gadolinium 64	$\begin{gathered} 159 \\ \mathrm{~Tb} \\ \text { terbium } \\ 65 \\ \hline \end{gathered}$	163 Dy dysprosium 66	$\begin{gathered} 165 \\ \mathrm{Ho} \\ \text { hotmium } \\ 67 \\ \hline \end{gathered}$	$\begin{gathered} \hline 167 \\ \text { Er } \\ \text { erbium } \\ 68 \\ \hline \end{gathered}$	$\begin{gathered} 169 \\ \mathrm{Tm}_{\text {thutium }} \\ 69 \\ \hline \end{gathered}$	173 Yb ytterbium 70	175 Lutetium 71	
			$\begin{gathered} \hline 232 \\ \text { Th } \\ \text { thorium } \\ 90 \end{gathered}$	$[231]$ Pa protactinium 91	238 U uranium 92	$[237]$ Np neptunium 93	$[242]$ Pu plutonium 94	$\begin{gathered} \hline[243] \\ \text { Am } \\ \text { americium } \\ 95 \end{gathered}$	$\begin{gathered} \hline[247] \\ \mathrm{Cm} \\ \text { curium } \\ 96 \end{gathered}$	$\begin{gathered} \hline[245] \\ \text { Bk } \\ \text { berkelium } \\ 97 \\ \hline \end{gathered}$	$[251]$ Cf catifornium 98	$[254]$ Es einsteinium 99	$\begin{gathered} \hline[253] \\ \text { Fm } \\ \text { fermium } \\ 100 \end{gathered}$	$[256]$ $M d$ mendelevium 101	$\begin{gathered} \hline[254] \\ \text { No } \\ \text { nobelium } \\ 102 \\ \hline \end{gathered}$	$[257]$ $\mathbf{L r}$ tawrencium 103	

Use the periodic table to give the A_{r} of the following elements.

Element	Relative atomic mass $/ \mathrm{g} \mathrm{mol}^{-1}$
Sodium	
Magnesium	
Chlorine	
Argon	
Calcium	
Titanium	
Zinc	
Arsenic	
Tungsten	
Mercury	
Lead	

Task 5

Relative molecular mass (M_{r})

The relative molecular mass is the average mass of one molecule of an element, or a compound compared to $1 / 12^{\text {th }}$ the mass of one atom of carbon12.

It is the sum of the relative atomic masses of the elements in a molecule.

Use the periodic table to calculate the M_{r} of the following molecules.

Molecule	Calculation	Relative molecular mass $/ \mathrm{g} \mathrm{mol}^{-1}$
O_{2}		
NaOH		
HCl		
$\mathrm{H}_{2} \mathrm{O}$		
MgCl_{2}		
$\mathrm{Na}_{2} \mathrm{CO}_{3}$		
$\mathrm{Fe}_{2} \mathrm{O}_{3}$		
$\mathrm{C}_{10} \mathrm{H}_{22}$		
CuSO_{4}		
$\mathrm{Mg}(\mathrm{OH})_{2}$		
$\mathrm{Fe}(\mathrm{OH})_{3}$		
$\mathrm{Fe}(\mathrm{NO})_{3}$		
$(\mathrm{NH})_{2} \mathrm{SO}_{4}$		

Task 5

> Mass / Mr / moles

Moles is the amount of a substance. One mole of a substance contains 6.022 $\times 10^{23}$ (Avogadro's constant) atoms or molecules. It is too big a number to use so instead we use moles.

23 g of sodium- 23 contains 6.022×10^{23} atoms.
24.3 g of magnesium -24.3 contains 6.022×10^{23} atoms.

Use this equation and rearrange to answer the questions. Make sure you give the units

$$
\text { Mass }=\mathrm{M}_{\mathrm{r}} \times \text { moles }
$$

Convert the following masses into mg, g or kg :

Mass		
mg	g	Kg
	1000	
	750	

2000	2	0.002
250000		
		0.4
		0.003

Calculating moles

1. Calculate the number of moles of 2 g of sodium hydroxide (NaOH)
2. Calculate the number of moles of 50 g of decane $\left(\mathrm{C}_{10} \mathrm{H}_{22}\right)$
3. Calculate the number of moles of 20 mg of sodium carbonate $\left(\mathrm{Na}_{2} \mathrm{CO}_{3}\right)$
4. Calculate the number of moles of 43 mg of oxygen $\left(\mathrm{O}_{2}\right)$
5. Calculate the number of moles of 0.05 Kg of copper sulphate $\left(\mathrm{CuSO}_{4}\right)$
6. Calculate the number of moles of 0.025 Kg of iron (II) oxide $\left(\mathrm{Fe}_{2} \mathrm{O}_{3}\right)$

Calculating mass

1. Calculate the mass of 0.5 moles of sodium carbonate $\left(\mathrm{Na}_{2} \mathrm{CO}_{3}\right)$. Give your answer in g.
2. Calculate the mass of 0.25 moles of decane $\left(\mathrm{C}_{10} \mathrm{H}_{22}\right)$. Give your answer ing.
3. Calculate the mass of 0.1 moles of magnesium chloride $\left(\mathrm{MgCl}_{2}\right)$. Give your answer in mg.
4. Calculate the mass of 0.125 moles of copper sulphate $\left(\mathrm{CuSO}_{4}\right)$. Give your answer in mg.
5. Calculate the mass of 1.25 moles of oxygen $\left(\mathrm{O}_{2}\right)$. Give your answer in kg .
6. Calculate the mass of 0.75 moles of sodium hydroxide (NaOH). Give your answer in kg.

Task 6
Moles/ Concentration/ Volume

Use this equation and rearrange to answer the questions.

$$
\text { Moles }=\text { Concentration } \times \text { Volume }
$$

Convert the following volumes into cm^{3} or dm^{3}

Volume	
cm^{3}	dm^{3}
75	
400	
660	
1230	

	0.005
	0.15
	0.7
	1.567

Calculating moles

1. A sodium hydroxide solution has a volume of $0.25 \mathrm{dm}^{3}$ and a concentration of $2 \mathrm{~mol} \mathrm{dm}^{-3}$. Calculate the moles of sodium hydroxide.
2. A sodium hydroxide solution has a volume of $500 \mathrm{~cm}^{3}$ and a concentration of $0.5 \mathrm{~mol} \mathrm{dm}^{-3}$. Calculate the moles of sodium hydroxide.
3. A hydrochloric acid solution has a volume of $300 \mathrm{~cm}^{3}$ and a concentration of $1 \mathrm{~mol} \mathrm{dm}^{-3}$. Calculate the moles of hydrochloric acid.
4. A sodium carbonate solution has a volume of $450 \mathrm{~cm}^{3}$ and a concentration of $0.125 \mathrm{~mol} \mathrm{dm}{ }^{3}$. Calculate the moles of sodium carbonate.
5. A nitric acid solution has a volume of $100 \mathrm{~cm}^{3}$ and a concentration of $0.75 \mathrm{~mol} \mathrm{dm}^{3}$. Calculate the moles of nitric acid.

Calculating concentration

1. A solution of hydrochloric acid contains 0.2 moles in $2 \mathrm{dm}^{3}$. Calculate the concentration of the solution in $\mathrm{mol} \mathrm{dm}{ }^{-3}$.
2. A solution of hydrochloric acid contains 0.5 moles in $500 \mathrm{~cm}^{3}$. Calculate the concentration of the solution in $\mathrm{mol} \mathrm{dm}^{-3}$.
3. A solution of sodium hydroxide contains 1 mole in $250 \mathrm{~cm}^{3}$. Calculate the concentration of the solution in mol dm .
4. A solution of nitric acid contains 0.6 moles in $1200 \mathrm{~cm}^{3}$. Calculate the concentration of the solution in $\mathrm{mol} \mathrm{dm}^{-3}$.
5. A solution of sulfuric acid contains 0.125 moles in $200 \mathrm{~cm}^{3}$. Calculate the concentration of the solution in $\mathrm{mol} \mathrm{dm}{ }^{-3}$.

Calculating volume

1. A solution of sulfuric acid has a concentration of $2 \mathrm{~mol} \mathrm{dm}^{-3}$. Calculate the volume of solution needed so that it contains 0.05 mol . Give your answer in dm^{3}.
2. A solution of hydrochloric acid has a concentration of $0.5 \mathrm{~mol} \mathrm{dm}{ }^{-3}$. Calculate the volume of solution needed so that it contains 0.25 mol . Give your answer in cm^{3}.
3. A solution of nitric acid has a concentration of $1 \mathrm{~mol} \mathrm{dm}^{-3}$. Calculate the volume of solution needed so that it contains 0.25 mol. Give your answer in cm^{3}.
4. A solution of sodium hydroxide has a concentration of 2 mol dm . Calculate the volume of solution needed so that it contains 0.125 mol . Give your answer in cm^{3}.
5. A solution of hydrochloric acid has a concentration of $0.25 \mathrm{~mol} \mathrm{dm}^{-3}$. Calculate the volume of solution needed so that it contains 0.5 mol . Give your answer in cm^{3}.

Task 7
Using two equations simultaneously

1. A sodium hydroxide (NaOH) solution has a volume of $0.1 \mathrm{dm}^{3}$ and a concentration of $0.5 \mathrm{~mol} \mathrm{dm}^{-3}$. Calculate the mass of sodium hydroxide needed ing.
2. A sodium hydroxide (NaOH) solution has a volume of $400 \mathrm{~cm}^{3}$ and a concentration of $0.25 \mathrm{~mol} \mathrm{dm}^{-3}$. Calculate the mass of sodium hydroxide needed ing.
3. 2 g of sodium chloride (NaCl) is dissolved in $0.25 \mathrm{dm}^{3}$ of water. Calculate the concentration of the solution in $\mathrm{mol} \mathrm{dm}^{-3}$.
4. 10.6 g of sodium carbonate $\left(\mathrm{Na}_{2} \mathrm{CO}_{3}\right)$ is dissolved in $0.1 \mathrm{dm}^{3}$ of water. Calculate the concentration of the solution in $\mathrm{mol} \mathrm{dm}^{-3}$.
5. A solution of copper sulphate $\left(\mathrm{CuSO}_{4}\right)$ has a concentration of $0.5 \mathrm{~mol} \mathrm{dm}^{-}$ ${ }^{3} .12 \mathrm{~g}$ of copper sulphate was needed to make it. Calculate the volume of water needed in dm^{3}.
6. A solution of sodium carbonate $\left(\mathrm{Na}_{2} \mathrm{CO}_{3}\right)$ has a concentration of 2 mol $\mathrm{dm}^{-3} .5 \mathrm{~g}$ of sodium carbonate was needed to make it. Calculate the volume of water needed in cm^{3}.

Task 8

Acid-alkali titrations

Titration is a required practical that students have to do as part of the BTEC course. The experiment and the write-up make up Task A of Unit 2 in Year 12. Your task is to research titrations using the questions below to help.

Research questions

1. What is titration?
2. What are titrations used for?
3. What equipment do you need?
4. How would you calibrate a balance, burette and pipette?
5. What mass of sodium carbonate $\left(\mathrm{Na}_{2} \mathrm{CO}_{3}\right)$ would be needed to make a solution with a concentration is $0.2 \mathrm{~mol} \mathrm{dm}^{3}$ in $250 \mathrm{~cm}^{3}$?
6. How would you prepare the sodium carbonate standard solution?
7. What is the method for the titration of $0.2 \mathrm{~mol} \mathrm{dm}^{-3}$ sodium carbonate and an unknown concentration of hydrochloric acid?
8. How would you calculate the concentration of HCl ?
9. How do you know when the experiment has reached endpoint?

Task 9

Titration calculations

$$
\begin{gathered}
\text { Moles }=\text { Concentration } \times \text { Volume } \\
\qquad \text { Concentration }=\frac{\text { Moles }}{\text { Volume }}
\end{gathered}
$$

1. $25 \mathrm{~cm}^{3}$ of 0.1 M NaOH is needed to titrate $12.5 \mathrm{~cm}^{3}$ of a solution of hydrochloric acid. Calculate the concentration of the acid.

$$
\mathrm{NaOH}(\mathrm{aq})+\mathrm{HCl}(\mathrm{aq}) \longrightarrow \mathrm{NaCl}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})
$$

2. $23.15 \mathrm{~cm}^{3}$ of 0.125 M NaOH is needed to titrate $25 \mathrm{~cm}^{3}$ of a solution of hydrochloric acid. Calculate the concentration of the acid.
$\mathrm{NaOH}(\mathrm{aq})+\mathrm{HCl}(\mathrm{aq}) \longrightarrow \mathrm{NaCl}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$
3. $25 \mathrm{~cm}^{3}$ of 0.2 M NaOH is needed to titrate $25 \mathrm{~cm}^{3}$ of a solution of sulphuric acid $\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)$. Calculate the concentration of the acid.

$$
2 \mathrm{NaOH}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \longrightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})
$$

4. $10 \mathrm{~cm}^{3}$ of a solution of hydrochloric acid (HCl) was titrated with a 0.5 M solution of sodium carbonate. $30 \mathrm{~cm}^{3}$ of the carbonate was required for neutralisation.
Calculate the concentration of hydrochloric acid.

$$
\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{aq})+2 \mathrm{HCl}(\mathrm{aq}) \longrightarrow 2 \mathrm{NaCl}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})+\mathrm{CO}_{2}(\mathrm{~g})
$$

