Year 11 Transition to 6th Form BTEC Applied Science Projects

BTEC Applied Science is a mixture of all three science areas of Biology, Chemistry and Physics. The course comprises a mixture of coursework, practical work and exams. This project will give you an idea of the sort of topics you will be covering in this course. Please complete all tasks in as much detail as you can.

The first two tasks are Biology research tasks. Task 3 is a Physics research task. All three of these are new topics you have not met at GCSE. Tasks 4-9 are Chemistry tasks which mostly can be done on these sheets. These are mostly short tasks and some of them are recapping or stretching GCSE knowledge which is essential for the BTEC course.

You may find the following websites helpful:

Dummies.com – Education – Science Britannica.com Youtube – HealthCare – Nerve Transmission Youtube - Bozeman Science – The Action Potential Parkinsonsnewstoday.com Parkinsons.org.uk Scienceofparkinsons.com Bbc Bitesize – Physics, Chemistry

<u>Task 1</u>

Using annotated drawings, explain the conduction of a nerve impulse along an axon, including changes in membrane permeability to sodium and potassium ions.

Describe how imbalances in dopamine can cause Parkinson's Disease and how is L-Dopa used for the treatment of Parkinson's Disease.

<u>Task 3</u>

What are diffraction gratings in Physics and how they can be used to identify different gasses?

Task 4

Relative atomic mass (A_r)

The relative atomic mass of an element is the average mass of its atoms compared to 1/12th the mass of one atom of carbon-12.

						ne re	rioai	c lad	le or	Elen	ients						
1	2											3	4	5	6	7	0 (8)
	-																(18)
							1.0										4.0
							н										Ho
							hydrogen										helium
(1)	(2)			Key			1]				(13)	(14)	(15)	(16)	(17)	2
6.9	9.0		relat	ive atomic	mass							10.8	12.0	14.0	16.0	19.0	20.2
Li	Be		ato	omic sym	bol							В	С	N	0	F	Ne
lithium	beryllium			name								boron	carbon	nitrogen	oxygen	fluorine	neon
3	4		atomic	(proton)	number							5	6	7	8	9	10
23.0	24.3											27.0	28.1	31.0	32.1	35.5	39.9
Na	Mg											Al	Si	P	S	Cl	Ar
sodium	magnesium	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	aluminium	silicon	phosphorus 15	sulfur	chlorine	argon 18
	12	(5)	(7)	(5)	(0)	(/)	(0)	()	(10)	(7.7)	(12)	13	72.4	74.0	70.0	70.0	02.0
39.1	40.1	45.0	47.9	50.9	52.0	54.9	55.8	58.9	58.7	63.5	65.4	69.7	72.6	74.9	79.0	/9.9 D-	03.0 K-
K	Ca	SC	11 titanium	V	Cr	Mn	Fe	CO	N1 nickol	Cu	Zn	Ga	Ge	AS	Selenium	bromine	krypton
19	20	21	22	vanadium 23	24	manganese 25	26	27	28	29	30	31	32	33	34	35	36
85.5	87.6	88.9	91.2	92.9	95.9	[98]	101 1	102.9	106.4	107.9	112.4	114.8	118 7	171.8	127.6	126.9	131.3
Rb	Sr	v	7r	Nh	Mo	Tc	Ru	Rh	Pd	Δσ	Cd	In	Sn	Sh	To	1	Xe
rubidium	strontium	yttrium	zirconium	niobium	molybdenum	technetium	ruthenium	rhodium	palladium	silver	cadmium	indium	tin	antimony	tellurium	iodine	xenon
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
132.9	137.3	138.9	178.5	180.9	183.8	186.2	190.2	192.2	195.1	197.0	200.6	204.4	207.2	209.0	[209]	[210]	[222]
Cs	Ba	La*	Hf	Та	w	Re	Os	Ir	Pt	Au	Hg	тι	Pb	Bi	Po	At	Rn
caesium	barium	lanthanum	hafnium	tantalum	tungsten	rhenium	osmium	iridium	platinum	gold	mercury	thallium	lead	bismuth	polonium	astatine	radon
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
[223]	[226]	[227]	[261]	[262]	[266]	[264]	[277]	[268]	[271]	[272]							
Fr	Ra	Ac*	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Eler	nents with	atomic nu	mbers 112	-116 have	been repor	ted
francium	radium	actinium	rutherfordium	dubnium	seaborgium	bohrium	hassium	meitnerium	darmstadtium	roentgenium			but not f	fully authe	nticated		
67	00	89	104	105	106	107	108	109	110	111	1						
			140	141	144	[147]	150	152	157	159	163	165	167	169	173	175	
* Lanthanide series		Ce	Pr	Nd	Pm	Sm	Eu	Gd	ть	Dv	Ho	Er	Tm	Yb	Lu		
* Actinide series		cerium	praseodymium	neodymium	promethium	samarium	europium	gadolinium	terbium	dysprosium	holmium	erbium	thulium	ytterbium	lutetium		
		58	59	60	61	62	63	64	65	66	67	68	69	70	71		
			232	[231]	238	[237]	[242]	[243]	[247]	[245]	[251]	[254]	[253]	[256]	[254]	[257]	
			Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr	
			thorium	protactinium	uranium	neptunium	plutonium	americium	curium	berkelium	californium	einsteinium	fermium	mendelevium	nobelium	lawrencium	
			90	91	92	93	94	95	96	97	98	99	100	101	102	103	

The Devie die Tehle of Flowe oute

Use the periodic table to give the A_r of the following elements.

Element	Relative atomic mass / g mol ⁻¹
Sodium	
Magnesium	
Chlorine	
Argon	
Calcium	
Titanium	
Zinc	
Arsenic	
Tungsten	
Mercury	
Lead	

Task 5 Relative molecular mass (M_r)

The relative molecular mass is the average mass of one molecule of an element, or a compound compared to $1/12^{th}$ the mass of one atom of carbon-12.

It is the sum of the relative atomic masses of the elements in a molecule.

Use the periodic table to calculate the M_r of the following molecules.

Molecule	Calculation	Relative molecular mass / g mol ⁻¹
O ₂		
NaOH		
HCI		
H ₂ O		
MgCl ₂		
Na ₂ CO ₃		
Fe ₂ O ₃		
C ₁₀ H ₂₂		
CuSO ₄		
Mg(OH) ₂		
Fe(OH)₃		
Fe(NO ₃) ₃		
(NH ₄) ₂ SO ₄		

Mass / M_r / moles

Moles is the amount of a substance. One mole of a substance contains 6.022 $x10^{23}$ (Avogadro's constant) atoms or molecules. It is too big a number to use so instead we use moles.

23 g of sodium-23 contains 6.022 x10²³ atoms.

24.3 g of magnesium-24.3 contains 6.022 x10²³ atoms.

Use this equation and rearrange to answer the questions. Make sure you give the units

Convert the following masses into mg, g or kg:

Mass					
mg	g	Кg			
	1000				
	750				

2000	2	0.002		
250000				
		0.4		
		0.003		

Calculating moles

- 1. Calculate the number of moles of 2 g of sodium hydroxide (NaOH)
- 2. Calculate the number of moles of 50 g of decane $(C_{10}H_{22})$
- 3. Calculate the number of moles of 20 mg of sodium carbonate (Na₂CO₃)
- 4. Calculate the number of moles of 43 mg of oxygen (O_2)
- 5. Calculate the number of moles of 0.05 Kg of copper sulphate (CuSO₄)
- 6. Calculate the number of moles of 0.025 Kg of iron (II) oxide (Fe_2O_3)

Calculating mass

- 1. Calculate the mass of 0.5 moles of sodium carbonate (Na_2CO_3). Give your answer in g.
- 2. Calculate the mass of 0.25 moles of decane ($C_{10}H_{22}$). Give your answer in g.
- 3. Calculate the mass of 0.1 moles of magnesium chloride (MgCl₂). Give your answer in mg.
- 4. Calculate the mass of 0.125 moles of copper sulphate (CuSO₄). Give your answer in mg.
- 5. Calculate the mass of 1.25 moles of oxygen (O₂). Give your answer in kg.

6. Calculate the mass of 0.75 moles of sodium hydroxide (NaOH). Give your answer in kg.

Task 6 Moles/ Concentration/ Volume

Use this equation and rearrange to answer the questions.

 $Moles = Concentration \times Volume$

Convert the following volumes into cm³ or dm³

Volume				
cm ³	dm ³			
75				
400				
660				
1230				

0.005
0.15
0.7
1.567

Calculating moles

- 1. A sodium hydroxide solution has a volume of 0.25 dm^3 and a concentration of 2 mol dm⁻³. Calculate the moles of sodium hydroxide.
- 2. A sodium hydroxide solution has a volume of 500 $\rm cm^3$ and a concentration of 0.5 mol dm⁻³. Calculate the moles of sodium hydroxide.

- 3. A hydrochloric acid solution has a volume of 300 cm^3 and a concentration of 1 mol dm⁻³. Calculate the moles of hydrochloric acid.
- 4. A sodium carbonate solution has a volume of 450 $\rm cm^3$ and a concentration of 0.125 mol $\rm dm^3.$ Calculate the moles of sodium carbonate.

5. A nitric acid solution has a volume of 100 cm³ and a concentration of 0.75 mol dm³. Calculate the moles of nitric acid.

Calculating concentration

1. A solution of hydrochloric acid contains 0.2 moles in 2 dm³. Calculate the concentration of the solution in mol dm⁻³.

2. A solution of hydrochloric acid contains 0.5 moles in 500 cm³. Calculate the concentration of the solution in mol dm⁻³.

3. A solution of sodium hydroxide contains 1 mole in 250 cm³. Calculate the concentration of the solution in mol dm⁻³.

4. A solution of nitric acid contains 0.6 moles in 1200 cm³. Calculate the concentration of the solution in mol dm⁻³.

5. A solution of sulfuric acid contains 0.125 moles in 200 cm³. Calculate the concentration of the solution in mol dm⁻³.

Calculating volume

1. A solution of sulfuric acid has a concentration of 2 mol dm⁻³. Calculate the volume of solution needed so that it contains 0.05 mol. Give your answer in dm^{3.}

2. A solution of hydrochloric acid has a concentration of 0.5 mol dm⁻³. Calculate the volume of solution needed so that it contains 0.25 mol. Give your answer in cm^{3.}

- 3. A solution of nitric acid has a concentration of 1 mol dm⁻³. Calculate the volume of solution needed so that it contains 0.25 mol. Give your answer in cm^{3.}
- 4. A solution of sodium hydroxide has a concentration of 2 mol dm⁻³. Calculate the volume of solution needed so that it contains 0.125 mol. Give your answer in cm^{3.}

5. A solution of hydrochloric acid has a concentration of 0.25 mol dm⁻³. Calculate the volume of solution needed so that it contains 0.5 mol. Give your answer in cm^{3.}

Task 7

Using two equations simultaneously

- 1. A sodium hydroxide (NaOH) solution has a volume of 0.1 dm³ and a concentration of 0.5 mol dm⁻³. Calculate the mass of sodium hydroxide needed in g.
- 2. A sodium hydroxide (NaOH) solution has a volume of 400 cm³ and a concentration of 0.25 mol dm⁻³. Calculate the mass of sodium hydroxide needed in g.

3. 2 g of sodium chloride (NaCl) is dissolved in 0.25 dm³ of water. Calculate the concentration of the solution in mol dm⁻³.

4. 10.6 g of sodium carbonate (Na_2CO_3) is dissolved in 0.1 dm³ of water. Calculate the concentration of the solution in mol dm⁻³.

- A solution of copper sulphate (CuSO₄) has a concentration of 0.5 mol dm⁻³.
 12 g of copper sulphate was needed to make it. Calculate the volume of water needed in dm³.
- 6. A solution of sodium carbonate (Na_2CO_3) has a concentration of 2 mol dm⁻³. 5 g of sodium carbonate was needed to make it. Calculate the volume of water needed in cm³.

Titration is a required practical that students have to do as part of the BTEC course. The experiment and the write-up make up Task A of Unit 2 in Year 12. Your task is to research titrations using the questions below to help.

Research questions

- 1. What is titration?
- 2. What are titrations used for?
- 3. What equipment do you need?

- 4. How would you calibrate a balance, burette and pipette?
- 5. What mass of sodium carbonate (Na₂CO₃) would be needed to make a solution with a concentration is 0.2 mol dm³ in 250 cm³?
- 6. How would you prepare the sodium carbonate standard solution?
- 7. What is the method for the titration of 0.2 mol dm⁻³ sodium carbonate and an unknown concentration of hydrochloric acid?
- 8. How would you calculate the concentration of HCl?
- 9. How do you know when the experiment has reached endpoint?

Titration calculations

 $Moles = Concentration \times Volume$

 $Concentration = \frac{Moles}{Volume}$

1. 25 cm³ of 0.1 M NaOH is needed to titrate 12.5 cm³ of a solution of hydrochloric acid. Calculate the concentration of the acid.

NaOH (aq) + HCl (aq) \longrightarrow NaCl (aq) + H₂O (l)

2. 23.15 cm³ of 0.125 M NaOH is needed to titrate 25 cm³ of a solution of hydrochloric acid. Calculate the concentration of the acid.

NaOH (aq) + HCl (aq) \longrightarrow NaCl (aq) + H₂O (l)

3. 25 cm³ of 0.2 M NaOH is needed to titrate 25 cm³ of a solution of sulphuric acid (H_2SO_4) . Calculate the concentration of the acid.

2NaOH (aq) + H₂SO₄ (aq) - Na₂SO₄ (aq) + 2H₂O (I)

10 cm³ of a solution of hydrochloric acid (HCl) was titrated with a 0.5 M solution of sodium carbonate. 30 cm³ of the carbonate was required for neutralisation. Calculate the concentration of hydrochloric acid.

 $Na_2CO_3(aq) + 2HCI(aq) \rightarrow 2NaCI(aq) + H_2O(I) + CO_2(g)$