Task Help BTEC Chemistry

| (1)                   | (2)             |                        |                      | Key          |            |                 | hydrogen<br>1 |            |            |               |                                                                                        | (13)            | (14)       | (15)        | (16)      | (17)           | helium<br>2 |  |
|-----------------------|-----------------|------------------------|----------------------|--------------|------------|-----------------|---------------|------------|------------|---------------|----------------------------------------------------------------------------------------|-----------------|------------|-------------|-----------|----------------|-------------|--|
| 6.9                   | 9.0             |                        | relative atomic mass |              |            |                 |               |            |            |               |                                                                                        | 10.8            | 12.0       | 14.0        | 16.0      | 19.0           | 20.2        |  |
| Li                    | Ве              |                        | atomic symbol        |              |            |                 |               |            |            |               |                                                                                        | В               | С          | N           | 0         | F              | Ne          |  |
| lithium               | beryllium       |                        | name                 |              |            |                 |               |            |            |               |                                                                                        | boron           | carbon     | nitrogen    | oxygen    | fluorine       | neon        |  |
| 3                     | 4               | atomic (proton) number |                      |              | number     |                 |               |            |            |               |                                                                                        | 5               | 6          | 7           | 8         | 9              | 10          |  |
| 23.0                  | 24.3            |                        |                      |              |            |                 |               |            |            |               |                                                                                        | 27.0            | 28.1       | 31.0        | 32.1      | 35.5           | 39.9        |  |
| Na                    | Mg              |                        |                      |              |            |                 |               |            |            |               |                                                                                        | Al              | Si         | P           | S         | Cl             | Ar          |  |
| sodium                | magnesium<br>12 | (3)                    | (4)                  | (5)          | (6)        | (7)             | (8)           | (9)        | (10)       | (11)          | (12)                                                                                   | aluminium<br>13 | silicon    | 15          | sulfur    | 17             | argon<br>18 |  |
| 20.1                  | 10 1            | 45.0                   | 47.0                 | 50.0         | 52.0       | 54.0            | 55.0          | 59.0       | E9 7       | 42 F          | 65.4                                                                                   | 60.7            | 72.6       | 74.9        | 79.0      | 79.9           | 83.8        |  |
| 37.1<br>K             | 40.1            | 45.0<br>Sc             | 47.9                 | V            | 52.0       | 14.9            | 55.8<br>Fo    | <b>C</b> O | 50.7       | <b>C</b>      | 05.4<br>7n                                                                             | G2              | 72.0<br>Co | Λς          | 50        | Br             | Kr          |  |
| <b>n</b><br>potassium | calcium         | scandium               | titanium             | vanadium     |            | manganese       | iron          | cobalt     | nickel     | copper        |                                                                                        | gallium         | germanium  | arsenic     | selenium  | bromine        | krypton     |  |
| 19                    | 20              | 21                     | 22                   | 23           | 24         | 25              | 26            | 27         | 28         | 29            | 30                                                                                     | 31              | 32         | 33          | 34        | 35             | 36          |  |
| 85.5                  | 87.6            | 88.9                   | 91.2                 | 92.9         | 95.9       | [98]            | 101.1         | 102.9      | 106.4      | 107.9         | 112.4                                                                                  | 114.8           | 118.7      | 121.8       | 127.6     | 126.9          | 131.3       |  |
| Rb                    | Sr              | Y                      | Zr                   | Nb           | Mo         | Tc              | Ru            | Rh         | Pd         | Ag            | Cd                                                                                     | In              | Sn         | Sb          | Те        | 1              | Хе          |  |
| rubidium              | strontium       | yttrium                | zirconium            | niobium      | molybdenum | technetium      | ruthenium     | rhodium    | palladium  | silver        | cadmium                                                                                | indium          | tin        | antimony    | tellurium | iodine         | xenon       |  |
| 37                    | 38              | 39                     | 40                   | 41           | 42         | 43              | 44            | 45         | 46         | 47            | 48                                                                                     | 49              | 50         | 51          | 52        | 53             | 54          |  |
| 132.9                 | 137.3           | 138.9                  | 178.5                | 180.9        | 183.8      | 186.2           | 190.2         | 192.2      | 195.1      | 197.0         | 200.6                                                                                  | 204.4           | 207.2      | 209.0       | [209]     | [210]          | [222]       |  |
| Cs                    | Ba              | La*                    | Hf                   | Ta           | W          | Re              | Os            | lr         | Pt         | Au            | Hg                                                                                     | TI              | Pb         | Bi          | Po        | At             | Rn          |  |
| caesium               | barium<br>54    | lanthanum              | hafnium              | tantalum     | tungsten   | rhenium         | osmium        | iridium    | platinum   | gold          | mercury                                                                                | thallium        | lead       | bismuth     | polonium  | astatine       | radon       |  |
| 55                    | 50              | 57                     | 72                   | /3           | 74         | 75              | /0            | //         | /0         | /9            | 80                                                                                     | 01              | 02         | 03          | 04        | 60             | 00          |  |
|                       | [226]           |                        | [261]                |              | [266]      | [264]           |               | [268]      | [2/1]      | [2/2]         |                                                                                        |                 |            |             |           |                |             |  |
| Fr<br>francium        | Ra              | AC <sup>*</sup>        | <b>KT</b>            |              | Seaborgium | <b>BN</b>       | HS            | MC         | <b>DS</b>  | Kg            | Elements with atomic numbers 112-116 have been reported<br>but not fully authenticated |                 |            |             |           |                |             |  |
| 87                    | 88              | 89                     | 104                  | 105          | 106        | 107             | 108           | 109        | 110        | 111           |                                                                                        |                 |            |             |           |                |             |  |
|                       |                 |                        |                      |              |            |                 |               |            |            |               | J                                                                                      |                 |            |             |           |                |             |  |
|                       |                 |                        | 140                  | 141          | 144        | [147]           | 150           | 152        | 157        | 159           | 163                                                                                    | 165             | 167        | 169         | 173       | 175            |             |  |
| " Lanthanide series   |                 |                        | Ce                   | Pr           | Nd         | Pm              | Sm            | Eu         | Gd         | ТЬ            | Dy                                                                                     | Но              | Er         | Tm          | Yb        | Lu             |             |  |
| * Actinide series     |                 |                        | cerium               | praseodymium | neodymium  | promethium      | samarium      | europium   | gadolinium | terbium<br>65 | dysprosium                                                                             | holmium         | erbium     | thulium     | ytterbium | lutetium<br>71 |             |  |
| -                     |                 |                        | 30                   |              |            |                 | 02            | 03         | 104<br>104 | 0.0           | 00                                                                                     |                 | 00         | 07          | 70        | /              |             |  |
|                       |                 |                        | 232                  |              | 238        | [237]           |               |            |            | [245]         | [251]                                                                                  | [254]           | [253]      | [256]       | [254]     | [257]          |             |  |
|                       |                 |                        | thorium              | Pa           | U          | NP<br>neptupium |               | AM         | Cm         | <b>BK</b>     | Ct                                                                                     | ES              | <b>Fm</b>  | Md          | NO        | Lr             |             |  |
|                       |                 |                        |                      | protactinium |            |                 |               |            |            |               | cationium                                                                              | ensternum       | rennium    | mendelevium | nobellum  | awrencium      |             |  |

## Task (Relative atomic mass)



### Task (Relative molecular mass)

Nitrogen exists as a diatomic molecule  $(N_2)$ 

One atom of nitrogen has an A<sub>r</sub> of 14 g mol<sup>-1</sup>

Two atoms of nitrogen have an  $M_r$  of 28 g mol<sup>-1</sup> (14 x 2)

MoleculeCalculationRelative molecular<br/>mass / g mol<sup>-1</sup>N214 x 228



Mass =  $M_r x$  Moles

1. Calculate the mass of 0.25 moles of calcium (Ca)

 $0.25 \text{ mol x } 40.1 \text{ g mol}^{-1} = 10.025 \text{ g}$ 

You will need to rearrange the equation to answer some of the questions. Use the triangle to help.



Example where the units need to be converted

### Task continued

### 2. Calculate the number of moles of 54 mg of Nitrogen (N<sub>2</sub>)

$$Moles = \frac{Mass}{M_r}$$

\*The mass is not in grams – you need to convert to get it into grams

$$\frac{54 \text{ mg}}{1000} = 0.054 \text{ g} \qquad \frac{0.054 \text{ g}}{28 \text{ g mol}^{-1}} = 0.0019 \text{ mol}$$

## Task (Moles / Concentration / Volume)

cm<sup>3</sup> is the equivalent of a millilitre (mL). If the volume is given in cm<sup>3</sup> you need to convert to dm<sup>3</sup>.



Unit **Conversions** The volume must be in dm<sup>3</sup> which is the equivalent of a litre (L).

### Moles = Concentration x Volume

1. A sodium hydroxide solution has a volume of 0.25 dm<sup>3</sup> and a concentration of 0.5 mol dm<sup>-3</sup>. Calculate the moles of sodium hydroxide.

0.5 mol dm<sup>-3</sup> x 0.25 dm<sup>3</sup> = 0.125 mol

2. A sodium hydroxide solution has a volume of 100 cm<sup>3</sup> and a concentration of 0.2 mol dm<sup>-3</sup>. Calculate the moles of sodium hydroxide.

\*The volume is not in dm<sup>3</sup>. This needs to be converted.

 $\frac{100 \text{ cm}^3}{1000} = 0.1 \text{ dm}^3$ 

 $0.2 \text{ mol } dm^{-3} \ge 0.1 dm^3 = 0.02 \text{ mol}$ 

You will need to rearrange the equation to answer some of the questions. Use the triangle to help.



are the same thing

# 3. A solution of hydrochloric acid contains 0.75 moles in 1.5 dm<sup>3</sup>. Calculate the concentration of the solution in mol dm<sup>-3</sup>.

 $Concentration = \frac{Moles}{Volume}$ 

$$\frac{0.75 \text{ mol}}{1.5 \text{ dm}^3} = 0.5 \text{ mol dm}^{-3}$$

4. A solution of sodium hydroxide contains 0.25 mole in 500 cm<sup>3</sup>. Calculate the concentration of the solution in mol dm<sup>-3</sup>.

\*The volume is not in dm<sup>3</sup>. This needs to be converted

$$\frac{500 \text{ cm}^3}{1000} = 0.5 \text{ dm}^3$$
$$\frac{0.25 \text{ mol}}{0.5 \text{ dm}^3} = 0.5 \text{ mol dm}^{-3}$$

### Task (Using two equations simultaneously)

Moles = 
$$\frac{Mass}{M_r}$$

Moles = Concentration x Volume

#### You will need to calculate the moles first

 A sodium hydroxide (NaOH) solution has a volume of 250 cm<sup>3</sup> and a concentration of 0.1 mol dm<sup>-3</sup>. Calculate the mass of sodium hydroxide needed in g.

\*The volume is in cm<sup>3.</sup> This needs to be converted.

$$\frac{250 \text{ cm}^3}{1000} = 0.25 \text{ dm}^3$$

 $0.25 \text{ dm}^3 \times 0.1 \text{ mol dm}^3 = 0.025 \text{ mol}$ 

 $0.025 \text{ mol} \times 40 \text{ g mol}^{-1} = 1 \text{ g}$ 

## Task (Research task)

Research is very important in Science and makes up quite a bit of the BTEC Coursework.

Base your research on the questions that I have provided. This does need to be in quite a bit of detail.

You can present your research how ever you like.

## Task (Titration calculations)

You will need to use this equation

Moles = Concentration x Volume

1. 25 cm<sup>3</sup> of 1 M NaOH is needed to titrate 14 cm<sup>3</sup> of a solution of hydrochloric acid. Calculate the concentration of the acid.

NaOH (aq) + HCl (aq)  $\longrightarrow$  NaCl (aq) + H<sub>2</sub>O (l)

Steps

1. Convert the volume of NaOH

$$\frac{25 \text{ cm}^3}{1000} = 0.025 \text{ dm}^3$$

2. Calculate the moles of NaOH

 $0.025 \text{ dm}^3 \times 1 \text{ M} = 0.025 \text{ mol of NaOH}$ 

3. Look at the ratio of NaOH to HCl (You need to look at the numbers in front). If there is no big number in front. It is 1.

1:1 ratio of NaOH to HCl

Therefore there are 0.025 moles of HCl

\*If the ratio is different you will need to multiply or divide the number moles

4. Convert the volume of HCl

$$\frac{14 \text{ cm}^3}{1000} = 0.014 \text{ dm}^3$$

5. Calculate the concentration of HCl

$$\frac{0.025 \text{ mol}}{0.014 \text{ dm}^3} = 1.79 \text{ mol dm}^{-3}$$