Task Help BTEC Chemistry

(1)	(2)			Key			$\begin{gathered} \text { hydrogen } \\ 1 \\ \hline \end{gathered}$					(13)	(14)	(15)	(16)	(17)	helium 2
$\begin{gathered} 6.9 \\ \mathbf{L i} \\ \text { lithium } \\ 3 \end{gathered}$	9.0 Be beryllium 4		relat ato atomic	atomic ic sym name (proton)	mass bol number							$\begin{gathered} 10.8 \\ \text { B } \\ \text { boron } \\ 5 \\ \hline \end{gathered}$	$\begin{gathered} 12.0 \\ \text { Carbon } \\ 6 \\ \hline \end{gathered}$	14.0 \mathbf{N} nitrogen 7	$\begin{gathered} 16.0 \\ \mathrm{O} \\ \text { oxygen } \\ 8 \\ \hline \end{gathered}$	$\begin{gathered} 19.0 \\ \text { F } \\ \text { fluorine } \\ 9 \end{gathered}$	$\begin{gathered} \hline 20.2 \\ \mathrm{Ne} \\ \text { neon } \\ 10 \end{gathered}$
$\begin{gathered} 23.0 \\ \mathrm{Na} \\ \text { sodium } \\ 11 \end{gathered}$	24.3 Mg magnesium 12	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	$\mathbf{2 7 . 0}$ $\mathbf{A l}$ aluminium 13	$\begin{gathered} 28.1 \\ \text { Si } \\ \text { silicon } \\ 14 \end{gathered}$	31.0 \mathbf{P} phosphorus 15	$\begin{gathered} 32.1 \\ \mathrm{Sulfur} \\ 16 \end{gathered}$	$\begin{gathered} 35.5 \\ \mathrm{Cl} \\ \text { chlorine } \\ 17 \end{gathered}$	$\begin{gathered} 39.9 \\ \mathrm{Ar} \\ \text { argon } \\ 18 \end{gathered}$
39.1 K potassium 19	$\begin{gathered} 40.1 \\ \text { Ca } \\ \text { calcium } \\ 20 \end{gathered}$	$\begin{gathered} 45.0 \\ \text { Sc } \\ \text { scandium } \\ 21 \end{gathered}$	$\begin{gathered} 47.9 \\ \mathrm{Ti} \\ \text { titanium } \\ 22 \end{gathered}$		$\begin{gathered} 52.0 \\ \mathrm{Cr} \\ \text { chromium } \\ 24 \end{gathered}$	54.9 $\mathbf{M n}$ manganese 25	$\begin{gathered} 55.8 \\ \text { Fe } \\ \text { iron } \\ 26 \end{gathered}$	58.9 Co cobalt 27	$\begin{gathered} 58.7 \\ \mathbf{N i} \\ \text { nickel } \\ 28 \end{gathered}$	$\begin{gathered} 63.5 \\ \mathrm{Cu} \\ \text { copper } \\ 29 \end{gathered}$	$\begin{gathered} 65.4 \\ \text { Zn } \\ \text { zinc } \\ 30 \end{gathered}$	$\begin{gathered} 69.7 \\ \mathrm{Ga} \\ \text { gallium } \\ 31 \end{gathered}$	72.6 Ge germanium 32	74.9 As arsenic 33	79.0 Se selenium 34	$\begin{array}{c\|} \hline 79.9 \\ \mathbf{B r} \\ \text { bromine } \\ 35 \\ \hline \end{array}$	$\begin{gathered} 83.8 \\ \mathrm{Kr} \\ \text { krypton } \\ 36 \end{gathered}$
```85.5 Rb rubidium 37```	87.6   Sr   strontium   38	$\begin{gathered} 88.9 \\ \mathbf{Y} \\ \text { yttrium } \\ 39 \end{gathered}$	91.2   $\mathbf{Z r}$   zirconium   40	$\begin{gathered} 92.9 \\ \mathrm{Nb} \\ \text { niobium } \\ 41 \end{gathered}$	95.9   Mo   molybdenum   42	$[98]$   TC   technetium   43	101.1   Ru   ruthenium   44	$\begin{gathered} 102.9 \\ \mathbf{R h} \\ \text { rhodium } \\ 45 \end{gathered}$	106.4 Pd palladium 46	$\begin{gathered} 107.9 \\ \mathrm{Ag} \\ \text { silver } \\ 47 \end{gathered}$	$\begin{gathered} 112.4 \\ \text { Cd } \\ \text { cadmium } \\ 48 \end{gathered}$	$\begin{gathered} 114.8 \\ \text { In } \\ \text { indium } \\ 49 \end{gathered}$	$\begin{gathered} \hline 118.7 \\ \mathrm{Sn} \\ \text { tin } \\ 50 \\ \hline \end{gathered}$	121.8 Sb antimony 51	127.6   Te tellurium 52	$\begin{gathered} 126.9 \\ \text { I } \\ \text { iodine } \\ 53 \\ \hline \end{gathered}$	$\begin{gathered} 131.3 \\ \text { Xe } \\ \text { xenon } \\ 54 \end{gathered}$
$\begin{gathered} 132.9 \\ \text { Cs } \\ \text { caesium } \\ 55 \end{gathered}$	137.3   Ba   barium 56	$\begin{array}{\|c\|} \hline 138.9 \\ \text { La* }^{*} \\ \text { tanthanum } \\ 57 \\ \hline \end{array}$	$\begin{gathered} 178.5 \\ \text { Hf } \\ \text { hafnium } \\ 72 \end{gathered}$	180.9   Ta   tantalum   73	$\begin{gathered} 183.8 \\ \text { W } \\ \text { tungsten } \\ 74 \end{gathered}$	$\begin{gathered} 186.2 \\ \text { Re } \\ \text { rhenium } \\ 75 \end{gathered}$	$\begin{gathered} 190.2 \\ \text { Os } \\ \text { osmium } \\ 76 \end{gathered}$	$\begin{gathered} 192.2 \\ \text { Ir } \\ \text { iridium } \\ 77 \\ \hline \end{gathered}$	$\begin{gathered} 195.1 \\ \mathrm{Pt} \\ \text { platinum } \\ 78 \end{gathered}$	$\begin{gathered} 197.0 \\ \mathrm{Au} \\ \text { gold } \\ 79 \end{gathered}$	$\begin{gathered} 200.6 \\ \mathrm{Hg} \\ \text { mercury } \\ 80 \\ \hline \end{gathered}$	204.4   Tl   thallium   81	$\begin{gathered} 207.2 \\ \mathrm{~Pb} \\ \text { lead } \\ 82 \\ \hline \end{gathered}$	$\begin{gathered} 209.0 \\ \mathbf{B i} \\ \text { bismuth } \\ 83 \\ \hline \end{gathered}$	[209] Po   polonium 84	$\begin{gathered} \hline[210] \\ \text { At } \\ \text { astatine } \\ 85 \\ \hline \end{gathered}$	$\begin{gathered} {[222]} \\ \mathbf{R n} \\ \text { radon } \\ 86 \\ \hline \end{gathered}$
[223] Fr francium 87	$\begin{gathered} {[226]} \\ \mathrm{Ra} \\ \text { radium } \\ 88 \\ \hline \end{gathered}$	$\begin{array}{\|c} \hline[227] \\ \text { Ac* } \\ \text { actinium } \\ 89 \\ \hline \end{array}$	[261] Rf   nutherfordium 104	$\begin{gathered} {[262]} \\ \text { Db } \\ \text { dubnium } \\ 105 \end{gathered}$		$\begin{gathered} \hline[264] \\ \mathbf{B h} \\ \text { bohrium } \\ 107 \\ \hline \end{gathered}$	$\begin{gathered} {[277]} \\ \text { Hs } \\ \text { hassium } \\ 108 \end{gathered}$	$[268]$ Mt meitnerium 109	$[271]$ Ds darmstattium 110		Elements with atomic numbers 112-116 have been reported but not fully authenticated						

* Lanthanide series
* Actinide series



## Task (Relative atomic mass)



Relative atomic mass of nitrogen is $14 \mathrm{~g} \mathrm{~mol}^{-1}$

Atomic number of nitrogen is 14

## Task (Relative molecular mass)

Nitrogen exists as a diatomic molecule ( $\mathrm{N}_{2}$ )

One atom of nitrogen has an $A_{r}$ of $14 \mathrm{~g} \mathrm{~mol}^{-1}$

Two atoms of nitrogen have an $\mathrm{M}_{\mathrm{r}}$ of $28 \mathrm{~g} \mathrm{~mol}^{-1}(14 \times 2)$

Molecule	Calculation	Relative molecular   mass $/ \mathrm{g} \mathrm{mol}^{-1}$
$\mathrm{~N}_{2}$	$14 \times 2$	28

Task 3(Mass / Mr / Moles)


Unit

## Conversions

The mass must be in grams (g)

## Task continued

$$
\text { Mass }=M_{r} \times \text { Moles }
$$

1. Calculate the mass of 0.25 moles of calcium (Ca)

$$
0.25 \mathrm{~mol}^{2} 40.1 \mathrm{~g} \mathrm{~mol}^{-1}=10.025 \mathrm{~g}
$$

You will need to rearrange the equation to answer some of the questions. Use the triangle to help.

## Task continued



## Task continued

2. Calculate the number of moles of 54 mg of Nitrogen $\left(\mathrm{N}_{2}\right)$

$$
\text { Moles }=\frac{\text { Mass }}{M_{r}}
$$

*The mass is not in grams - you need to convert to get it into grams

$$
\frac{54 \mathrm{mg}}{1000}=0.054 \mathrm{~g} \quad \frac{0.054 \mathrm{~g}}{28 \mathrm{~g} \mathrm{~mol}^{-1}}=0.0019 \mathrm{~mol}
$$

## Task (Moles / Concentration / Volume)

$\mathrm{cm}^{3}$ is the equivalent of a millilitre ( mL ). If the volume is given in $\mathrm{cm}^{3}$ you need to convert to $\mathrm{dm}^{3}$.


## Unit

Conversions

The volume must be in $\mathrm{dm}^{3}$ which is the equivalent of a litre (L).

## Task continued

## Moles $=$ Concentration $\times$ Volume

1. A sodium hydroxide solution has a volume of $0.25 \mathrm{dm}^{3}$ and a concentration of $0.5 \mathrm{~mol} \mathrm{dm}^{-3}$. Calculate the moles of sodium hydroxide.

$$
0.5 \mathrm{~mol} \mathrm{dm}^{-3} \times 0.25 \mathrm{dm}^{3}=0.125 \mathrm{~mol}
$$

## Task continued

2. A sodium hydroxide solution has a volume of $100 \mathrm{~cm}^{3}$ and a concentration of $0.2 \mathrm{~mol} \mathrm{dm}^{-3}$. Calculate the moles of sodium hydroxide.
*The volume is not in $\mathrm{dm}^{3}$. This needs to be converted.

$$
\begin{gathered}
\frac{100 \mathrm{~cm}^{3}}{1000}=0.1 \mathrm{dm}^{3} \\
0.2 \mathrm{~mol} \mathrm{dm}^{-3} \times 0.1 \mathrm{dm}^{3}=0.02 \mathrm{~mol}
\end{gathered}
$$

You will need to rearrange the equation to answer some of the questions. I lse the triangle to heln

## Task continued



## Task continued

3. A solution of hydrochloric acid contains 0.75 moles in $1.5 \mathrm{dm}^{3}$. Calculate the concentration of the solution in $\mathrm{mol} \mathrm{dm}^{-3}$.

$$
\begin{aligned}
& \text { Concentration }=\frac{\text { Moles }}{\text { Volume }} \\
& \frac{0.75 \mathrm{~mol}}{1.5 \mathrm{dm}^{3}}=0.5 \mathrm{~mol} \mathrm{dm}^{-3}
\end{aligned}
$$

## Task continued

4. A solution of sodium hydroxide contains 0.25 mole in $500 \mathrm{~cm}^{3}$. Calculate the concentration of the solution in $\mathrm{mol} \mathrm{dm}^{-3}$.
*The volume is not in $\mathrm{dm}^{3}$. This needs to be converted

$$
\begin{gathered}
\frac{500 \mathrm{~cm}^{3}}{1000}=0.5 \mathrm{dm}^{3} \\
\frac{0.25 \mathrm{~mol}}{0.5 \mathrm{dm}^{3}}=0.5 \mathrm{~mol} \mathrm{dm}^{-3}
\end{gathered}
$$

## Task (Using two equations simultaneously)

$$
\text { Moles }=\frac{\text { Mass }}{M_{r}}
$$

Moles $=$ Concentration $\times$ Volume

You will need to calculate the moles first

## Task continued

1. A sodium hydroxide ( NaOH ) solution has a volume of $250 \mathrm{~cm}^{3}$ and a concentration of $0.1 \mathrm{~mol} \mathrm{dm}^{-3}$. Calculate the mass of sodium hydroxide needed in g .
*The volume is in $\mathrm{cm}^{3}$. This needs to be converted.

$$
\begin{gathered}
\frac{250 \mathrm{~cm}^{3}}{1000}=0.25 \mathrm{dm}^{3} \\
0.25 \mathrm{dm}^{3} \times 0.1 \mathrm{~mol} \mathrm{dm}^{3}=0.025 \mathrm{~mol} \\
0.025 \mathrm{~mol} \times 40 \mathrm{~g} \mathrm{~mol}^{-1}=1 \mathrm{~g}
\end{gathered}
$$

## Task (Research task)

Research is very important in Science and makes up quite a bit of the BTEC Coursework.

Base your research on the questions that I have provided. This does need to be in quite a bit of detail.

You can present your research how ever you like.

## Task (Titration calculations)

## You will need to use this equation

Moles $=$ Concentration $\times$ Volume

1. $25 \mathrm{~cm}^{3}$ of 1 M NaOH is needed to titrate $14 \mathrm{~cm}^{3}$ of a solution of hydrochloric acid. Calculate the concentration of the acid.

$$
\mathrm{NaOH}(\mathrm{aq})+\mathrm{HCl}(\mathrm{aq}) \longrightarrow \mathrm{NaCl}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

## Task continued

Steps

1. Convert the volume of NaOH

$$
\frac{25 \mathrm{~cm}^{3}}{1000}=0.025 \mathrm{dm}^{3}
$$

2. Calculate the moles of NaOH

$$
0.025 \mathrm{dm}^{3} \times 1 \mathrm{M}=0.025 \mathrm{~mol} \text { of } \mathrm{NaOH}
$$

## Task continued

3. Look at the ratio of NaOH to HCl (You need to look at the numbers in front). If there is no big number in front. It is 1.

## 1:1 ratio of NaOH to HCl

Therefore there are 0.025 moles of HCl
*If the ratio is different you will need to multiply or divide the number moles

## Task continued

4. Convert the volume of HCl

$$
\frac{14 \mathrm{~cm}^{3}}{1000}=0.014 \mathrm{dm}^{3}
$$

5. Calculate the concentration of HCl

$$
\frac{0.025 \mathrm{~mol}}{0.014 \mathrm{dm}^{3}}=1.79 \mathrm{~mol} \mathrm{dm}^{-3}
$$

